Simultaneous high C fixation and high C emissions in Sphagnum mires

نویسندگان

  • S. F. Harpenslager
  • G. van Dijk
  • S. Kosten
  • J. G. M. Roelofs
  • A. J. P. Smolders
  • P. M. Lamers
چکیده

Peatlands play an important role in the global carbon (C) cycle due to their large C storage potential. Their C sequestration rates, however, highly vary depending on climatic and geohydrological conditions. Transitional mires are often characterised by floating peat with infiltration of buffered groundwater or surface water. Sphagnum mosses grow on top, producing recalcitrant organic matter and fuelling large C stocks. As Sphagnum species strongly differ in their tolerance to the higher pH in these mires, their species composition can be expected to influence C dynamics in transitional mires. We therefore experimentally determined growth and net C sequestration rates for four different Sphagnum species (Sphagnum squarrosum, S. palustre, S. fallax and S. magellanicum) in aquaria, with floating peat influenced by the infiltration of buffered water. Surprisingly, even though the first three species increased their biomass, the moss-covered peat still showed a net efflux of CO2 that was up to 3 times higher than that of bare peat. This species-dependent C release could be explained by Sphagnum’s active lowering of the pH, which triggers the chemical release of CO2 from bicarbonate. Our results clearly illustrate that high Sphagnum biomass production may still coincide with high C emission. These counterintuitive C dynamics in mire succession seem to be the result of both speciesand biomass-dependent acidification and buffered water infiltration. Together, these processes can explain part of the large variation in C fluxes (ranging from C sequestration to C release) reported for pristine mires in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Ecological Significance of Sexual Reproduction in Peat Mosses (Sphagnum)

Sundberg, S. 2000. The ecological significance of sexual reproduction in peat mosses (Sphagnum). Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 581. 37 pp. Uppsala. ISBN 91-554-4847-X. Peat mosses (Sphagnum) are widely distributed and are a major component of mire vegetation and peat throughout the boreal and temperate...

متن کامل

Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the tempe...

متن کامل

Effect of Sphagnum cover on GHG evolution and decomposition-chain exoenzyme activity of arctic thermokarst peat

As the global average temperature climbs, the poles are warming at a rate disproportionate to that of the equator, causing rapid permafrost melt. Arctic palsa mire ecosystems are an immensely valuable, and critically endangered, terrestrial carbon sink. The effects of climate warming on palsa mire ecosystems are capricious and complex, particularly in terms of decomposition dynamics in permafro...

متن کامل

Ecology of testate amoebae from mires in the Central Rhodope Mountains, Greece and development of a transfer function for palaeohydrological reconstruction.

Testate amoebae are useful environmental indicators in ecological and palaeoecological studies from peatlands. Previous quantitative studies have focused on the peatlands of Northern and Central Europe, North America, and New Zealand and have considered a relatively restricted variety of peatland types, mostly ombrotrophic or Sphagnum-dominated while more minerotrophic fens have been less studi...

متن کامل

Association of transpiration efficiency with N2 fixation of peanut under early season drought

Peanut is grown mostly in rainfed areas where drought is a recurring problem. Peanut genotypes with high transpiration efficiency (TE) use less water and produced yield better under drought conditions. Specific leaf area and SPAD chlorophyll meter reading are used as surrogate traits for TE. N2 fixation (NF) is also used as a surrogate trait for yield under drought. The objective of this study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015